A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations
نویسنده
چکیده
Over the past years, model reduction techniques have become a necessary path for the reduction of computational requirements in the numerical simulation of complex models. A family of a priori model reduction techniques, called Proper Generalized Decomposition (PGD) methods, are receiving a growing interest. These methods rely on the a priori construction of separated variables representations of the solution of models defined in tensor product spaces. They can be interpreted as generalizations of Proper Orthogonal Decomposition (POD) for the a priori construction of such separated representations. In this paper, we introduce and study different definitions of PGD for the solution of time-dependent partial differential equations. We review classical definitions of PGD based on Galerkin or Minimal Residual formulations and we propose and discuss several improvements for these classical definitions. We give an interpretation of optimal decompositions as the solution of pseudo eigenproblems. We also introduce a new definition of PGD, called Minimax PGD, which can be interpreted as a Petrov-Galerkin model reduction technique, where test and trial reduced basis functions are related by an adjoint problem. This new definition improves convergence properties of separated representations with respect to a chosen metric. It coincides with a classical POD for degenerate time-dependent partial differential equations. For the numerical construction of each PGD, we propose algorithms inspired from the solution of eigenproblems. Several numerical examples illustrate and compare the different definitions of PGD on transient advection-diffusion-reaction equations.
منابع مشابه
Numerical solution of time-dependent foam drainage equation (FDE)
Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملHAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE
We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010